From Chaotic Iteration to Constraint
Propagation

Krzysztof R. Apt

CWI
P.O. Box 94079, 1009 AB Amsterdam, The Netherlands
and
Dept. of Mathematics, Computer Science, Physics & Astronomy
University of Amsterdam, The Netherlands

“Don’t express your ideas too clearly. Most people
think little of what they understand, and venerate
what they do not.”

(The Art of Worldly Wisdom,
Baltasar Gracidn, 1647.)

Abstract. We show how the constraint propagation process can be nat-
urally explained by means of chaotic iteration.

1 Introduction

1.1 Motivation

Over the last ten years constraint programming emerged as an interesting and
viable approach to programming. In this approach the programming process is
limited to a generation of requirements (“constraints”) and a solution of these
requirements by means of general and domain specific methods. The techniques
useful for finding solutions to sets of constraints were studied for some twenty
years in the field of Constraint Satisfaction. One of the most important of them
is constraint propagation, the elusive process or reducing a constraint satisfaction
problem to another one that is equivalent but “simpler”.

The algorithms that achieve such a reduction usually aim at reaching some
“local consistency”, which denotes some property approximating in some loose
sense “global consistency”, so the consistency of the whole constraint satisfaction
problem. (In fact, most of the notions of local consistency are neither implied
by nor imply global consistency.)

For some constraint satisfaction problems such an enforcement of local con-
sistency is already sufficient for finding a solution or for determining that none
exists. In some other cases this process substantially reduces the size of the search
space which makes it possible to solve the original problem more efficiently by
means of some search algorithm.

The aim of this paper is to show that the constraint propagation algorithms
can be naturally explained by means of chaotic iteration, a basic technique used

37

for computing limits of iterations of finite sets of functions that originated from
numerical analysis (see Chazan and Miranker (1969)) and was adapted for com-
puter science needs by Cousot and Cousot (1977). In fact, several constraint
propagation algorithms proposed in the literature turn out to be instances of
generic chaotic iteration algorithms studied here.

Moreover, by characterizing a given notion of a local consistency as a common
fixed point of a finite set of monotonic and inflationary functions we can auto-
matically generate an algorithm achieving this notion of consistency by “feeding”
these functions into a generic chaotic iteration algorithm.

1.2 Preliminaries
Definition 1. Consider a sequence of domains D := Dy,..., D,.

— By a scheme (on n) we mean a sequence of different elements from [1..n].

— We say that C is a constraint (on D) with scheme iy,...,5if CC D; x-+- X
D;,.

— Let s := sy1,...,s; be a sequence of schemes. We say that a sequence of
constraints Cy, ...,Cx on D is an s-sequence if each C; is with scheme s;.

— By a Constraint Satisfaction Problem (D;C), in short CSP, we mean a se-
quence of domains D together with an s-sequence of constraints C on D. We
call then s the scheme of (D;C). O

Given an n-tuple d := dy,...,d, in Dy X ...x D, and a scheme s :=1;,...,%;
on n we denote by d[s] the tuple d;,, ..., d;,. In particular, for j € [1.n] d[j] is
the j-th element of d. By a solution to a CSP (D;C), where D := Dy,..., Dy,
we mean an n-tuple d € Dy X ... x D,, such that for each constraint C in C with
scheme s we have d[s] € C.

Consider now a sequence of schemes si,...,8;. By its union, written as
(s1,-..,Sk) we mean the scheme obtained from the sequences s,...,s; by re-
moving from each s; the elements present in some s;, where j < 7, and by con-
catenating the resulting sequences. For example, ((3,7,2), (4,3,7,5),(3,5,8)) =
(3,7,2,4,5,8). Recall that for an s1,.. ., sg-sequence of constraints Ci,...,Ck
their join, written as C; X --- X Cg, is defined as the constraint with scheme
(s1,...,8k) and such that

de Cy XM Cy iff d[s;] € C; for i € [1..k].

Further, given a constraint C and a subsequence s of its scheme, we denote
by II;(C) the constraint with scheme s defined by

II,(C) := {d[s] | d € C},

and call it the projection of C on s. In particular, for a constraint C' with scheme
s and an element j of s, II;(C) = {a | 3d € C a = d[j]}.

Given a CSP (D;C) we denote by Sol((D;C)) the set of all solutions to it.
If the domains are clear from the context we drop the reference to D and just
write Sol(C). The following observation is useful.

38

Note 2. Consider a CSP (D;C) with D := Dy, ...,D, and C := Cy,...,Cx and
with scheme s.

(i) Sol((D;C)) = Cy ™M -+ - M Cf Wyer Dy,

where I := {i € [l.n] | i does not appear in s}.
(i) For every s-subsequence C of C and d € Sol((D;C)) we have d[(s)] € Sol(C).
a

Finally, we call two CSP’s equivalent if they have the same set of solutions.
Note that we do not insist that these CSP’s have the same sequence of domains
or the same scheme.

2 Chaotic Iterations

As already mentioned in the introduction, one of the corner stones of constraint
programming is constraint propagation. In general, two basic approaches fall
under this name:

— reduce the domains while maintaining equivalence;
— reduce the constraints while maintaining equivalence.

In what follows we study these two processes in full generality.

2.1 Chaotic Iterations on Simple Domains

In general, chaotic iterations are defined for functions that are projections on
individual components of a specific function with several arguments. In our ap-
proach we study a more elementary situation in which the functions are unrelated
but satisfy certain properties. These functions are defined on specific partial or-
ders. We need the following concepts.

Definition 3. We call a partial order (D, C) an U-po if

— D contains the least element, denoted by L,
— for every increasing sequence

dyo €E dy C da...
of elements from D, the least upper bound of the set
{dOa d17 d2) .. '}a

denoted by | |°2, dn and called the limit of dg,dy, ..., exists,
— for all a,b € D the least upper bound of the set {a,b}, denoted by a Ll b,
exists.

Further, we say that

39

— an increasing sequence dg = dy T ds ... eventually stabilizes at d if for
some j > 0 we have d; = d for 7 > 7,

— a partial order satisfies the finite chain property if every increasing sequence
of its elements eventually stabilizes. 0O

Definition 4. Consider a set D, an element d € D and a set of functions F :=

{fi,-- fx} on D.

— By a run (of the functions fi,..., fr) we mean an infinite sequence of num-
bers from [1..].

— A run 4,19, .. is called fair if every 1 € [1..k] appears in it infinitely often.

— By an iteration of F' associated with a run iy,12,... and starting with d we
mean an infinite sequence of values dg, dy, ... defined inductively by

do = d,

dj = fi;(dj-1)-

When d is the least element of D in some partial order clear from the context,
we drop the reference to d and talk about an iteration of F.
— An iteration of F is called chaotic if it is associated with a fair run. o

Definition 5. Consider a partial order (D, C). A function f on D is called

~ inflationary if z C f(z) for all z,
— monotonic if z C y implies f(z) C f(y) for all z,y,
— idempotent if f(f(z)) = f(z) for all z.
0

The following observation can be easily distilled from a more general result
due to Cousot and Cousot (1977). To keep the paper self-contained we provide
a direct proof.

Theorem 6 (Chaotic Iteration). Consider anU-po (D, C) and a set of func-

tions F := {f1,..., f} on D. Suppose that all functions in F are inflationary
and monotonic. Then the limit of every chaotic iteration of F exists and coin-

cides with
oo
REa¥2
j=0

where the function f on D is defined by:

and f 17 is an abbreviation for fi(L), the j-th fold iteration of f started at 1.

40

Proof. First notice that f is inflationary, so I__I?‘_’__O f 1 j exists. Fix a chaotic
iteration do, dy, ... of F associated with a fair run ij,1s,.... Since all functions
f; are inflationary, |__|;'-f’__0 d; exists. The result follows directly from the following
two claims.

Claim 1 Vj3m f 15 C dp.
Proof. We proceed by induction on j.
Base. j = 0. As f 1 0= L = dj, the claim is obvious.

Induction step. Assume that for some j > 0 we have f 1 j C d,,, for some
m > 0. Since

k
FHE+10=ff13) =] fi(f19)
i=1
it suffices to prove
Vi € [1..k] 3m; fi(f 1T 7) T dm,. (1)

Indeed, we have then by the fact that d; E dj4q for I >0

k k
L £:(F15) E | | dm: E dm
=1 =1
where m' := maz{m; | i € [1..k]}.
So fix 7 € [1..k]. By fairness of the considered run 41, 3,. .., for some m; > m
we have i, = i. Then d,,,;, = fi(dm;—1). Now dy, © dyy;—1, S0 by the monotonic-

ity of f; we have

fi(f 13) € fi(dm) E fi(dm;~1) = dm,.
This proves (1). o

Claim 2 Vmd,, C f T m.

Proof. The proof is by a straightforward induction on m. Indeed, for m = 0 we
have dy = L = f 10, so the induction base holds.
To prove the induction step suppose that for some m > 0 we have d,, C f T

m. For some ¢ € [1.k] we have dpt1 = fi(d,,), so by the monotonicity of f we
get

dmt1 = fi(dm) C f(dm) E f(ftm)=f1 (m+1).

a
O

In many situations some chaotic iteration studied in the Chaotic Iteration
Theorem 6 eventually stabilizes. This is for example the case when (D, C)
satisfies the finite chain property. In such cases the limit of every chaotic iteration
can be characterized in an alternative way.

41

Corollary 7 (Chaotic Iteration). Suppose that under the assumptions of the
Chaotic Iteration Theorem 6 some chaotic iteration of F' eventually stabilizes.
Then every chaotic iteration of F' eventually stabilizes at the least fized point of

f.

Proof. It suffices to note that if some chaotic iteration dy, d;. .. of F' eventually
stabilizes at some d,, then by Claims 1 and 2 f m = dpy, so

e e}
L] rti=f1tm (2)
j=0
Then, again by Claims 1 and 2, every chaotic iteration of F' stabilizes at f T m
and it is easy to see that by virtue of (2) f T m is the least fixed point of f. O

2.2 Chaotic Iterations on Compound Domains

Not much more can be deduced about the process of the chaotic iteration unless
the structure of the domain D is further known. So assume now that (D, C)
is the Cartesian product of the U-po’s (D;, T ;), for ¢ € [l..n], defined in the
expected way. It is straightforward to check that (D, T) is then an LI-po, as well.
In what follows we consider a modification of the situation studied in the Chaotic
Iteration Theorem 6 in which each function f; affects only certain components
of D.

Consider the partial orders (D;, T ;), for i € [l.n] and a scheme s :=
i1,-- -1 on n. Then by (Ds, C ;) we mean the Cartesian product of the partial
orders (Dy;, C), for j € [1..1].

Given a function f on D we say that f is with scheme s. Instead of defining
iterations for the case of the functions with schemes, we rather reduce the situ-
ation to the one studied in the previous subsection. To this end we canonically
extend each function f on D; to a function f* on D as follows. Suppose that
§ = ’il,. ..,’i[and

f(d’i17"'7d'il) = (6;1,...,621)-

Let for j € [1..n]
o e if j is an element of s,
77 | dj otherwise.

Then we set
fH(dy, .. dp) = (e1,...,€n).

Suppose now that (D, C) is the Cartesian product of the U-po’s (D;, T ;),
for i € [L.n], and F := {f1,..., fk} is a set of functions with schemes that are
all inflationary and monotonic. Then the following algorithm can be used to
compute the limit of the chaotic iterations of F* := {f;7,..., fi }. We say here
that a function f depends on 1 if ¢ is an element of its scheme.

42

GENERIC CHAOTIC ITERATION ALGORITHM (CI)

d:=(L,.., L)
~————

n times
d =d,
G:=F;

while G # 0 do
choose g € G; suppose ¢ is with scheme s;
G:=G-{g};
&1s] = gldls));
if d[s] # d'[s] then
G:=GU{f € F| f depends on some i in s such that d[i] # d'[i]};
d[s] == d'[s]
fi
od

The following observation will be useful in the proof of correctness of this
algorithm.

Note 8. Consider the partial orders (D;, C ;), for 1 € [l..n], a scheme s on n
and o function f with scheme s. Then

(i) f is inflationary iff ¥ is,
(ii) f is monotonic iff f¥ is.

The following result summarizes the properties of the CI algorithm.

Theorem 9.

(i) Every terminating ezecution of the CI algorithm computes in d the least fized
point of the function f on D defined by

k
f@) =] fi (a).
i=1
(i) If all (D;, T ;), where i € [1..n], satisfy the finite chain property, then every
exzecution of the CI algorithm terminates.

Proof. It is simpler to reason about a modified, but equivalent, algorithm in
which the assignments d'[s] := g(d[s]) and d[s] := d'[s] are respectively replaced
by d' := g7 (d) and d := d’ and the test d[s] 3 d'[s] by d # d'.

(7) Note that the formula

I:=VfeF-Gftd)=d

is an invariant of the while loop of the modified algorithm. Thus upon its ter-
mination

(G=0) NI

43

holds, that is
VfeF ft(d) =d.

Consequently, some chaotic iteration of F'* eventually stabilizes at d. Hence d
is the least fixpoint of the function f defined in item (i) because the Chaotic
Iteration Corollary 7 is applicable here by virtue of Note 8(i) and (ii).

(i7) Consider the lexicographic order of the partial orders (D,) and (N, <),
defined on the elements of D x N by

(d1,n1) Sieq (d2,m2) iff dy I dy or (di = dy and ny < ny).

‘We use here the inverse order J and IV denotes the set of natural numbers.
By Note 8(i) all functions f;" are inflationary, so with each while loop iter-
ation of the modified algorithm the pair

(d,card G)

strictly decreases in this order <;.,. Howver, in general the lexicographic order
(D x N,<iez) is not well-founded and in fact termination is not guaranteed.
But assume now additionally that each partial order (D;, C ;) satisfies the fi-
nite chain property. Then so does their Cartesian product (D, C). This means
that (D, 3) is well-founded and consequently so is (D x N, <je,) which implies
termination. 0

When all considered functions f; are also idempotent, we can reverse the
order of the two assignments to G, that is to put the assignment G := G — {g}
after the if-then-fi statement, because after applying an idempotent function
there is no use in applying it immediately again. Let us denote by CII the
algorithm resulting from this movement of the assignment G := G — {g}.

More specialized versions of the CI and CII algorithms can be obtained by
representing G as a queue. To this end we use the operation enqueue(F, Q)
which for a set F' and a queue @ enqueues in an arbitrary order all the elements
of F'in @, denote the empty queue by empty, and the head and the tail of a non-
empty queue @ respectively by head(Q) and tail(Q). The following algorithm
is then a counterpart of the CI algorithm.

GENERIC CHAOTIC ITERATION ALGORITHM WITH A QUEUE (CIQ)

d:=(L,...,1);
N ——
n times
d = d;
Q := empty;

enqueue(F, Q);

while @Q # empty do
g := head(Q); suppose g is with scheme s;
Q = tail(Q);
d'[s] := g(d[s]);

44

if d[s] # d'[s] then
enqueue({f € F | f depends on some i in s such that d[s] # d'[1]}, Q);
dfs] :== d'[s]
fi
od

Denote by CIIQ the modification of the CIQ algorithm that is appropriate for
the idempotent functions, so the one in which the assignment Q := tail(Q) is
performed after the if-then-fi statement.

It is easy to see that the claims of Theorem 9 also hold for the CII, CIQ and
CIIQ algorithms. A natural question arises whether for the specialized versions
CIQ and CIIQ some additional properties can be established. The answer is pos-
itive. Namely, for these two algorithms the following result holds which shows
that the nondeterminism present in these algorithms has no bearing on their
termination.

Theorem 10. If some ezecution of the CIQ algorithm terminates, then all the
erecutions of the CIQ algorithm terminate.

Proof. We first establish the following observation.

Claim 1 If some chaotic iteration of F* eventually stabilizes, then all the exe-
cutions of the CIQ algorithm terminate.

Proof. We prove the contrapositive. Consider an infinite execution of the CIQ al-
gorithm algorithm. Let 41,72, . .. be the run associated with it and £ := dp, dy, . ..
the iteration of F* associated with this run. By the structure of this algorithm

¢ does not stabilize. (3)

Let A be the set of the elements of [1..k] that appear finitely often in the run
1,12, For some m > 0 we have i; ¢ A for ; > m. This means by the
structure of this algorithm that after m iterations of the while loop no function
fi for 1 € A is ever present in the queue Q.

By virtue of the invariant I used in the proof of Theorem 9 we then have
f(d;) =d; fori € A and j > m. This allows us to transform the iteration ¢ to
a chaotic one by repeating each element d; for § > m card A times.

Assume now that a chaotic iteration of F'* eventually stabilizes. Then by the
Chaotic Iteration Corollary 7 the just constructed chaotic iteration stabilizes, as
well. So the original iteration £ also stabilizes which contradicts (3). O

Construct now a chaotic iteration of F* the initial prefix of which corre-
sponds with a terminating execution of the CIQ algorithm. By virtue of the

invariant I this iteration eventually stabilizes. This concludes the proof thanks
to Claim 1. 0O

An analogous result holds for the CIIQ algorithm. On the other hand, it is
easy to see that this result does not hold for the CI and CII algorithms.

45

3 Constraint Propagation

Let us return now to the study of CSP’s. We show here how the results of the
previous section can be used to explain the constraint propagation process.

3.1 Domain Reduction

In this subsection we study the domain reduction process. First we associate
with each CSP an U-po that “focuses” on the domain reduction.
Consider a CSP P := (Dy,...,D,;C). Let for X, Y C D;

XC,Yif X2V

Then for 7 € [1.n] (P(D;), C;)isan U-powith L; =D;and X U; Y =XNY.
Consequently, the Cartesian product (DO, C) of (P(D;), C ;), wheret € [1..n],
is also an U-po. We call (DO, C) the domain U-po associated with P.

As in in Subsection 2.2, for a scheme s := 41, . ..,1; we denote by (DOg, C ;)
the Cartesian product of the partial orders (P(D;;), C ;;), where j € [1..1].

Note that DOy = P(D;,) x - -+ x P(D;,). Because we want now to use con-
straints in our analysis and constraint are sets of tuples, we identify DO, with
the set

{Xl X - %X X ! X]‘ gD,’j for 5 € [1”}

In this way we can write the elements of DO; as Cartesian products X X+ - - x X,
so as (specific) sets of [-tuples, instead of as (X1, ..., X}), and similarly with DO.

Note that because of the use of the inverse subset order O we have for X; x
X X;€DOgand Yy x---xY; € DO,

Xix- - xXEYx-xY iff Xy x---xX;27; x---xY]
(ff X; 2Y; for ¢ € [1..1]),

(X1><~‘.XX1)L|S(Y1)<‘..XYI) =(X1><...)<Xl)ﬂ<y1x...x’yl)
(=(XinY) x - x (X;NY)).

Moreover, D; X - -+ x D, is the least element of DO.

So far we have defined an LI-po associated with a CSP. Next, we introduce
functions by means of which chaotic iterations will be generated. These functions
are associated with constraints. Constraints are arbitrary sets of k-tuples for
some k, while the T ; order and the LI; operation are defined only on Cartesian
products. So to define these functions we use the set theoretic counterparts D
and N of C ; and Uy which are defined on arbitrary sets.

Definition 11. Consider a sequence of domains Dy, ..., D, and a scheme s on
n. By a domain reduction function for a constraint C with scheme s we mean a
function f on DO; such that for all D € DO,

- D:_)f(D)’
- CND=Cnf(D). O

46

The first condition states that f reduces the “current” domains associated
with the constraint C (so no solution to C is “gained”), while the second condi-
tion states that during this domain reduction process no solution to C is “lost”.
In particular, the second condition implies that if C C D then C C f(D).

Note that for the partial order (DO;, C) afunction f on DO; is inflationary

iff DD f(D) and f is monotonic iff it is monotonic w.r.t. the set inclusion.

Ezample 1. As a simple example of a domain reduction functions consider a
binary constraint C C D; X D,. Define now the functions f; and fy on DOy 2 :=
P(D;) x P(Ds3) as follows:

(X xY):=X'"xY,
where X' = {a € X | I €Y (a,b) € C}, and
F2(X XY) =X xY,

where Y/ = {b€ Y | Ja € X (a,b) € C}. 1t is straightforward to check that f;
and f, are indeed domain reduction functions. Further, these functions are mono-
tonic w.r.t. the set inclusion and idempotent. |

Take now a CSP P := (Dy, ..., D,;C) and a sequence of domains D}, ..., D,
such that D} C D; for i € [1..n]. Consider a CSP P’ obtained from P by replacing
each domain D} by D; and by restricting each constraint in C to these new
domains. We say then that P’ is determined by P and Dy X ... x Dj,.

Consider now a CSP P := (D, ..., D,;C) and a domain reduction function
f for a constraint C of C. Suppose that

fT(Dy x -+ x D) =D} x---x Dl,

where fT is the canonic extension of f to DO defined in Subsection 2.2. We now
define f(P) to be the CSP determined by P and Dj x ... x D;,. The following
observation holds.

Lemma 12. Consider a CSP P and a domain reduction function f. Then P
and f(P) are equivalent.

Proof. Suppose that Dq,...,D, are the domains of P and assume that f is a
domain reduction function for C with scheme 1;,...,4;. Let

f(Di, x -+ xDy)=Dj x---xDj.

Take now a solution d to P. Then d[i1,..., 4] € C, so by the definition of f
also dfiy, ..., 4] € D] X ---x Dj . So d is also a solution to f(P). The converse
implication holds by the definition of a domain reduction function. a

When dealing with a specific CSP we have in general several domain re-
duction functions. To study their interaction we can use the Chaotic Iteration
Theorem 6 in conjunction with the above Note. After translating the relevant
notions into set theoretic terms we get the following direct consequence of these
results. (In this translation DO, corresponds to Ds; and DO to D.)

47

Theorem 13 (Domain Reduction). Consider a CSP P := (D,...,D,;C).
Let F := {f1,..., fx}, where each f; is a domain reduction function for some
constraint in C. Suppose that all functions f; are monotonic w.r.t. the set inclu-
ston. Then

— the limit of every chaotic iteration of F* := {f{",..., i} ezists;
— this limait cowncides with

() (D1 x -+ x D),

j=0
where the function f on DO is defined by:

k
£(D) = () £ (D),

— the CSP determined by P and this limit is equivalent to P. a

Informally, this theorem states that the order of the applications of the do-
main reduction functions does not matter, as long as none of them is indefinitely
neglected.

Consider now a CSP P and suppose that the domain U-po associated with
it satisfies the finite chain property. Then we can use the CI, CII, CIQ and
CIIQ algorithms to compute the limits of the chaotic iterations considered in
the above Theorem. We shall explain in Subsection 4.1 how by instantiating
these algorithms with specific domain reduction functions we obtain specific
algorithms considered in the literature. In each case, by virtue of Theorem 9 and
its reformulations for the CII, CIQ and CIIQ algorithms, we can conclude that
these algorithms compute the greatest common fixpoint w.r.t. the set inclusion
of the functions from F*.

3.2 Constraint Reduction

We now study the constraint reduction process. As in the previous subsection
we begin by associating with each CSP an U-po that “focuses” on the constraint
reduction.

Consider a CSP P := (D;Cy,...,Ck). Let for X,Y C C;

XC,YifXDY.

Let now (CO, C) be the Cartesian product of the U-po’s (P(C;), C ;), where
i € [1..n]. We call (CO, C) the constraint U-po associated with P.

Following the notation of the previous subsection, for a scheme s:=1;,...,4
on k we denote by (COs, C ;) the Cartesian product of the partial orders
(P(Ci;), C i), where j € [1..]], and identify COs with the set

{X1 X o x X l Xj - Cij for j € [11]},

and similarly with CO.
Next, we define functions that will be used to generate chaotic iterations.

48

Definition 14. Consider a CSP (D;Cy, ..., Ck) and a scheme s on k. By a con-
straint reduction function with scheme s we mean a function g on COyg such that
for all C € CO;

- C 2 g(C)1
- Sol(C) = Sol(g(C)). a

C is here a Cartesian product of some constraints and in the second condition
and in the example below we identified it with the sequence of these constraints,
and similarly with g(C). The first condition states that g reduces the constraints
C;, where i is an element of s, while the second condition states that during this
constraint reduction process no solution to C is lost.

Ezample 2. As an example of a constraint reduction function consider the fol-
lowing function g on some CO;:

9(CxC):=C"xC,

where C' = IT;(Sol(C, C)) and t is the scheme of C. To see that g is indeed a
constraint reduction function, first note that by the definition of Sol we have
C'CC, 50 C xC D g(C x C). Next, note that for d € Sol(C, C) we have d[t] €
I1,(Sol(C,C)), so d € Sol(C’, C). This implies that Sol(C,C) = Sol(g(C, C)).
Note also that g is monotonic w.r.t. the set inclusion and idempotent. |

Ezample 8. As another example that is of importance for the discussion in Sub-
section 4.1 consider a CSP (Dy,..., D,;C) of binary constraints such that for
each scheme i, j on n there is exactly one constraint, which we denote by C; ;.

Define now for each scheme k,l,m on n the following function gy on COs,
where s is the triple corresponding to the positions of the constraints Cy i, Ckm
and Cp, ; in C:

Ir(Xea X Xgom X Xont) = (Xg i 0 I i (Xgym M Xin1)) X Xigym X X -

To prove that the functions g, are constraint reduction functions it suffices
to note that by simple properties of the X operation and by Note 2(i) we have

Xieg NI) (Xieym X X t) = e 1 (X M X X X 1)
= ITj 1 (Sol(Xk 1, Xic,m, Xm,1)),

so these functions are special cases of the functions defined in Example 2. O

Take now a CSP P := (D;C4,. . ., C) and a sequence of constraints C1, . .., C},
such that C; C C; for i € [1..k]. Let P' := (D;Cy,...,C}). We say then that P’
is determined by P and C{ x ... x C}.

Consider now a CSP P := (D; Cy,...,Ck) and a constraint reduction function
g with scheme s. Suppose that

gt (Cy x -+ x C)=Cy x - x Cy,

49

where g% is the canonic extension of g to CO defined in Subsection 2.2. We now

define
g(P) := (D;Cy, ..., CL).

We have the following observation.

Lemma15. Consider a CSP P and a constraint reduction function g. Then P
and g(P) are equivalent.

Proof. Suppose that s is the scheme of the function g and let C be an element
of CO,. C is a Cartesian product of some constraints. As before we identify it
with the sequence of these constraints. For some sequence of schemes s, C is
the s-sequence of the constraints of P.

Let now d be a solution to P. Then by Note 2(ii) we have d[(s}] € Sol(C),
so by the definition of g also d[(s)] € Sol(g(C)). Hence for every constraint
C’ in g(C) with scheme s’ we have d[s’] € C’ since d[(s)][s'] = d[s']. So d is a
solution to g(P). The converse implication holds by the definition of a constraint
reduction function.

O

As in the case of the domain reduction we can now apply the results of
Section 2 to study the outcome of the constraint reduction process. To this
end it suffices to translate the relevant notions into set theoretic terms. (In this
translation CO, corresponds to Dy and CO to D.) We get then the following
counterpart of the Domain Reduction Theorem 13.

Theorem 16 (Constraint Reduction). Consider a CSPP := (D;C},...,Ck).
Let F :={g1,...,9x}, where each g; is a constraint reduction function. Suppose
that all functions g; are monotonic w.r.t. the set inclusion. Then

— the limit of every chaotic iteration of F¥ := {g7,..., g} exists;
— this limit coincides with
o0

ﬂgj(Cl X - X Cg),

=0

where the function g on CO is defined by:

k
9(C) =47 (C),

— the CSP determined by P and this limit is equivalent to P. 0O

When the constraint L-po associated with a CSP P satisfied the finite chain
property, we can use the algorithms discussed in Subsection 2.2 to compute the
limits of the chaotic iterations considered in the above Theorem. We return to
this issue in Subsection 4.1. Also here, as in the previous subsection, we can
conclude by virtue of Theorem 9 that these algorithms compute the greatest,
common fixpoint w.r.t. the set inclusion of the functions from F*. So the limit of

50

the constraint propagation process could be added to the collection of important
greatest fixpoints presented in Barwise and Moss (19?6). o

Next. we show how specific provably correct algorithms for achieving a local
consistency notion can be automatically derived. As it is difficult to define local

consistency formally, we illustrate the idea on an example.

Erample 4. We consider here the notion of relational consistency proposed re-
cently in Dechter and van Beek (1997). .

To define it need to introduce some auxiliary concepts first. Consider a CSP
(D1, ..., Dy;C). Take a scheme t := ip,...,% on n. Wecalld € D;, x--- x Dy a
tuple of type ¢ and say that d is consistent if for every subsequence s of ¢ and a
constraint C € C with scheme s we have d[s] € C.

A CSP 7P is called relationally m-consistent if for any s-sequence C,.. ., C,,
of different constraints of P and a subsequence ¢t of (s), every consistent tuple of
type t belongs to II;(Cy X -+ X Cpy).

As the first step we characterize this notion as a common fixed point of a
finite set of monotonic and inflationary functions.

Consider a CSP P := (Dy,...,Dyp;Ch,...,Ck). Assume for simplicity that
for every scheme s on n there is a unique constraint with scheme s. Each CSP
is trivially equivalent with such a CSP — it suffices to replace for cach scheme
s the set of constraints with scheme s by their intersection and to introduce
“universal constraints” for the schemes without a constraint.

Consider now a scheme i1, ...,im, on k. Let s be such that C;,,...,C;, is
an s-sequence of constraints and let ¢ be a subsequence of (s). Further, let, Ci,
be the constraint of P with scheme t. Put s := ((10), (i1, -+ - im)). (Note that
if ip does not appear in iy,...,1,, then s = ig,1y,...,4, and otherwise s is the
permutation of 4y, .. .,n, obtained by transposing ig with the first clement..)

Define now a function g5 on CO; by

95(C x C):= (CNIL(XC)) x C.
It is easy to see that if for each function g of the above form we have
g7 (Cix - xCh)=Cy x - X Cl,

then P is relationally m-consistent. (The converse implication is in general not
true). Note that the functions gs are inflationary and monotonic w.r.t. the inverse
subset order D and also idempotent.

Consequently, by virtue of Theorem 9 reformulated for the CII algorithm,
We can now use the CIT algorithm to achieve relational m-consistency for a CSP
with finite domains by “feeding” into this algorithm the above defined functions.
The gbtained algorithm improves upon the (authors’ terminology) brute force
algox:1thm proposed in Dechter and van Beek (1997) since the uscless constraint
modifications are avoided. | ‘

As in Example 3, by simple properties of the X operation and by Note 2(1)
we have : ’

CNIL(X C) = I1,(C™ (X C)) = IT,(s0l(C, C)).

51

Hence, by virtue of Example 2, the functions g, are all constraint reduction
functions. Consequently, by the Constraint Reduction Theorem 16 we conclude
that the CSP computed by the just discussed algorithm is equivalent to the
original one. o

It is perhaps worthwhile to note that the domain reduction process can be
seen as a special case of the constraint reduction process. To this end it suffices
to introduce unary constraints each of which coincides with a different domain
of the given CSP and replace the reduction of the domains by the reduction of
these unary constraints followed by the restriction of the other constraints to
these reduced unary constraints. So the domain reduction functions can be seen
as special cases of the constraint reduction functions.

We decided to consider the domain reduction process separately, because, as
we shall see in the next section, it has been extensively studied, especially in
the context of CSP’s with binary constraints and of interval arithmetic. Con-
sequently, it is useful to analyze it directly, without any introduction of new
constraints.

4 Concluding Remarks

4.1 Related Work

It is illuminating see how the attempts of finding general principles behind the
constraint propagation algorithms repeatedly reoccur in the literature on con-
straint satisfaction problems spanning the last twenty years.

As already stated in the introduction, the aim of the constraint propagation
algorithms is most often to achieve some form of local consistency. As a result
these algorithms are usually called in the literature “consistency algorithms” or
“consistency enforcing algorithms”.

To start with, in Mackworth (1977) a unified framework was proposed to ex-
plain the so-called arc- and path-consistency algorithms. Also the arc-consistency
algorithm AC-3 and the path-consistency algorithm PC-2 were proposed and the
latter algorithm was obtained from the former one by pursuing the analogy
between both notions of consistency.

The AC-3 consistency algorithm can be obtained by instantiating the CII
algorithm with the domain reduction functions defined in Example 1, whereas
the PC-2 algorithm can be obtained by instantating this algorithm with the
domain reduction functions defined in Example 3.

In Dechter and Pearl (1988) the notions of arc- and path-consistency were
modified to directional arc- and path-consistency, versions that take into account
some total order <4 of the domain indices, and the algorithms for achieving
these forms of consistency were presented. These algorithms can be obtained as
instances of the CIQ algorithm as follows.

For the case of directional arc-consistency the queue in this algorithm should
be instantiated with the set of the domain reduction functions f; of Example 1
for the constraints the scheme of which is consistent with the <z order. These

52

functions should be ordered in such a way that the domain reduction functions
for the constraint with the <g-large second index appear earlier. This order
has the effect that the enqueue operation within the if-then-fi statement has
always the empty set as the first argument, so it can be deleted. Consequently,
the algorithm can be rewritten as a simple for loop that processes the selected
domain reduction functions f; in the appropriate order.

For the case of directional path-consistency the constraint reduction functions
9 should be used only for k,! <4 m and the queue in the CIQ algorithm should
be initialized in such a way that the functions g, with the <g-large m index
appear earlier. As in the case of directional arc-consistency this algorithm can
be rewritten as a simple for loop.

In Montanari and Rossi (1991) a general study of constraint propagation was
undertaken by defining the notion of a relaxation rule and by proposing a general
relaxation algorithm. The notion of a relaxation rule coincides with our notion
of a constraint propagation function instantiated with the functions defined in
Example 2 and the general relaxation algorithm is the corresponding instance
of our CI algorithm.

In Montanari and Rossi (1991) it was also shown that the notions of arc-
consistency and path-consistency can be defined by means of relaxation rules
and that as a result arc-consistency and path-consistency algorithms can be
obtained by instantiating with these rules their general relaxation algorithm.

Van Hentenryck, Deville and Teng (1992) presented a generic arc consistency
algorithm, called AC-5, that can be specialized to the known arc-consistency
algorithms AC-3 and AC-4 and also to new arc-consistency algorithms for specific
classes of constraints.

In Benhamou, McAllester and Hentenryck (1994) and Benhamou and Older
(1997) specific functions, called narrowing functions, were associated with con-
straints in the context of interval arithmetic for reals and some properties of
them were established that in our terminology mean that these are idempo-
tent domain reduction functions. As a consequence the algorithms proposed in
these papers, called respectively a fixpoint algorithm and a narrowing algorithm,
become respectively the instances of our CIIQ algorithm and CII algorithm.

The importance of fairness for the study of constraint propagation was no-
ticed in Montanari and Rossi (1991), while the relevance of the chaotic iteration
was independently noticed in Fages, Fowler and Sola (1996) and van Emden
(1996). In the latter paper the generic chaotic iteration algorithm CII was formu-
lated and proved correct for the domain reduction functions defined in Benhamou
and Older (1997) and it was shown that the limit of the constraint propagation
process for these functions is their greatest common fixpoint.

The idea that the meaning of a constraint is a function (on a constraint store)
with some algebraic properties was put forward in Saraswat, Rinard and Panan-
gaden (1991), where the properties of being inflationary (called there extensive),
monotonic and idempotent were singled out.

It is unrealistic to expect that all constraint propagation algorithms presented
in the literature can be expressed as direct instances of the algorithms discussed

53

in this paper. For example the AC-4 algorithm of Mohr and Henderson (1986)
associates with each domain element some information concerning its links with
the elements of other domains. As a result this algorithm operates on some
“enhancement” of the original domains.

We noted, however, that even in this case the analysis here provided can
be used to explain this algorithm. To this end one needs to reason about the
translation of the original CSP to a CSP defined on the enhanced domains. This
analysis allows us to reduce the proof of the correctness of this algorithm to the
proof that specific functions are monotonic domain reduction functions.

4.2 Idempotence

In each of the above papers the (often implicitly) considered semantic, domain
or constraint reduction functions are idempotent, so we now comment on the
relevance of this assumption.

To start with, in our study Apt (1997) of linear constraints on finite integer
intervals we found that natural domain reduction functions are not idempotent.
Secondly, as noticed in Older and Vellino (1993), another paper on constraints
for interval arithmetic on reals, we can always replace each non-idempotent in-
flationary function f by

oo
fz) =] F(@).
i=1
The following is now straightforward to check.

Note 17. Consider an U-po (D, C) and a function f on D.

— If f is inflationary, then so is f*.

— If f is monotonic, then so f*.

— If f is inflationary and (D, ©) has the finite chain property, then f* is
idempotent.

— If f is idempotent, then f* = f.

— Suppose that (D, T) has the finite chain property. Let F := {f1,..., fx} be

a set of inflationary, monotonic functions on D and let F* := {f{,..., fi}.
Then the limits of all chaotic iterations of F' and of F* exist and always
coincide. O

Consequently, under the conditions of the last item, every chaotic iteration
of F* can be modeled by a chaotic iteration of F, though not conversely. In
fact, the use of F* instead of F' can lead to a more limited number of chaotic
iterations. This may mean that in some specific algorithms some more efficient
chaotic iterations of F' cannot be realized when using F™*.

4.3 Semi-chaotic Iterations

The results of this paper can be slightly strengthened by considering the following
generalization of the chaotic iterations.

54

Definition 18. Consider a set of functions F := {fi,..., fx} on a domain D.

— We say that an element 7 € [1..k] is eventually irrelevant for an iteration
— An iteration of F is called semi-chaotic if every i € [1..k| that appears finitely
often in its run is eventually irrelevant for this iteration. o

So every chaotic iteration is semi-chaotic but not conversely. Now, in all the
results of this paper chaotic iterations can be replaced by semi-chaotic iterations.
The reason is that, as shown in the proof of Theorem 10, every semi-chaotic
iteration & can be transformed into a chaotic iteration ¢’ with the same limit
and such that ¢ eventually stabilizes at some d iff £’ does. The proof of Theorem
10 also shows that every infinite execution of the CIQ algorithm is associated
with a semi-chaotic iteration of F'*.

However, the property of being a semi-chaotic iteration cannot be determined
from the run only. So, for simplicity, we decided to limit our exposition to chaotic
iterations.

Acknowledgements

This work was prompted by our study of van Emden (1996). Rina Dechter
helped us to clarify (most of) our initial confusion about constraint propagation.
Discussions with Eric Monfroy helped us to better articulate various points put
forward here. Nissim Francez provided us with helpful comments.

References

Apt, K. (1997). A proof theoretic view of constraint programming, Technical report,
CWI, Amsterdam. In preparation.

Barwise, J. and Moss, L. (1996). Vicious Circles: on the mathematics of circular phe-
nomena, CSLI-Lecture Notes, Center for the Study of Language and Information,
Stanford, California.

Benhamou, F. and Older, W. (1997). Applying interval arithmetic to real, integer and
Boolean constraints, Journal of Logic Programming. Technical report 1994. To
appear.

Benhamou, F., McAllester, D. and Hentenryck, P. V. (1994). CLP(intervals) revisited,
in M. Bruynooghe (ed.), Proceedings of the 1994 International Logic Programming
Symposium, pp. 124~138.

Chazan, D. and Miranker, W. (1969). Chaotic relaxation, Linear Algebra and its
Applications 2: 199-222.

Cousot, P. and Cousot, R. (1977). Automatic synthesis of optimal invariant asser-
tions: mathematical foundations, ACM Symposium on Artificial Intelligence and
Programming Languages, SIGPLAN Notices 12 (8), pp. 1-12.

Dechter, R. and Pearl, J. (1988). Network-based heuristics for constraint-satisfaction
problems, Artificial Intelligence 34(1): 1-38.

Dechter, R. and van Beek, P. (1997). Local and global relational consistency, Theoret-
1cal Computer Science 173(1): 283-308.

55

Fages, F., Fowler, J. and Sola, T. (1996). Experiments in reactive constraint logic
programming, Technical report, DMI - LIENS CNRS, Ecole Normale Supérieure.
Submitted for publication.

Mackworth, A. (1977). Consistency in networks of relations, Artificial Intelligence
8(1): 99-118.

Mohr, R. and Henderson, T. (1986). Arc-consistency and path-consistency revisited,
Artificial Intelligence 28: 225-233.

Montanari, U. and Rossi, F. (1991). Constraint relaxation may be perfect, Artificial
Intelligence 48: 143-170.

Older, W. and Vellino, A. (1993). Constraint arithmetic on real intervals, in
F. Benhamou and A. Colmerauer (eds), Constraint Logic Programming: Selected
Research, MIT Press, pp. 175-195.

Saraswat, V., Rinard, M. and Panangaden, P. (1991). Semantic foundations of concur-
rent constraint programming, Proceedings of the Eighteenth Annual ACM Sympo-
stum on Principles of Programming Languages (POPL’91), pp. 333-352.

van Emden, M. H. (1996). Value constraints in the CLP scheme, Technical Report
CS-R9603, CWI, Amsterdam. To appear in the Constraints journal.

Van Hentenryck, P., Deville, Y. and Teng, C. (1992). A generic arc-consistency algo-
rithm and its specializations, Artificial Intelligence 57(2-3): 291-321.

